首页/新闻动态/工艺揭秘陶瓷基板DPC,AMB,HTCC,DBC等技术有什么不同
陶瓷基板目前在电子科技领域起着非常重要作用,核心是陶瓷基板的高导热性、高绝缘性、热导率等优势决定。那么陶瓷基板与陶瓷基片而言,有什么突出优势呢?
陶瓷基板和陶瓷基片的区别
陶瓷基片,是以电子陶瓷为基底,对膜电路元件及外贴切元件形成一个支撑底座的片状材料。
陶瓷基板是指铜箔在高温下直接键合到陶瓷基片表面(单面或双面)上的特殊工艺板。陶瓷基板所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像PCB板一样能刻蚀出各种图形,具有很大的载流能力。因此,陶瓷基板已成为大功率电力电子电路结构技术和互连技术的基础材料。
总之,简单来说,就是基片上没有线路,基板上已经蚀刻了金属线路。
陶瓷基板的核心优势
陶瓷基板机械应力强,形状稳定;高强度、高导热率、高绝缘性;结合力强,防腐蚀;具有极好的热循环性能,循环次数达5万次,可靠性高;与PCB板(或IMS基片)一样可刻蚀出各种图形的结构;无污染、无公害。
陶瓷基板的性能要求:
机械性质
有足够高的机械强度,除搭载元件外,也能作为支持构件使用;加工性好,尺寸精度高;
电学性质
绝缘电阻及绝缘破坏电压高;
介电常数低;
介电损耗小;
在温度高、湿度大的条件下性能稳定,确保可靠性。
热学性质
热导率高;
热膨胀系数与相关材料匹配(特别是与Si的热膨胀系数要匹配);
耐热性优良。
其它性质
化学稳定性好;容易金属化,电路图形与其附着力强;
无吸湿性;耐油、耐化学药品;a射线放出量小;
所采用的物质无公害、无毒性;在使用温度范围
内晶体结构不变化
陶瓷基板也有成为陶瓷电路板、陶瓷线路板、陶瓷pcb板等,陶瓷基板根据陶瓷基片材料不同,可以分为氧化铝陶瓷基板、氮化铝陶瓷基板、氮化硅陶瓷基板、碳化硅陶瓷基板等,根据不同工艺又可以分为DPC陶瓷基板、DBC陶瓷基板、AMB陶瓷基板、HTCC陶瓷基板、LTCC陶瓷基板等;根据层数可以分为单、双面陶瓷基板、多层陶瓷基板。陶瓷基板具备良好的综合电气性能,陶瓷基片更多是作为基底,支撑和散热、绝缘作用。
划重点陶瓷电路板的主要优点
1:导热系数高;
2:更匹配的热膨胀系数;
3:坚固,低阻抗的金属膜层;
4:基材可焊接性好,使用温度高;
5:绝缘性好;
6:低频损耗;
7:可以进行高密度组装;
8:无有机成分,耐宇宙射线,航空航天可靠性高,使用寿命长;
9:铜层不含氧化层,可在还原性气氛中长期使用;
陶瓷电路板的缺点
易碎,这是最主要的一个缺点,这也就导致只能制作小面积的电路板。
价格贵, 电子产品的要求规则越来越多,陶瓷电路板还是用在一些比较高端的产品上面,低端的产品根本不会使用到。
陶瓷电路板应用范围
陶瓷电路板可应用于LED,大功率功率半导体模块,半导体冷却器,电子加热器,功率控制电路,功率混合电路,智能功率组件,高频开关电源,固态继电器,汽车领域在电子,通信,航空航天和军用电子元件等领域,可以说占据了电子工业的大部分领域,无形也促进了电子工业的发展。如下图陶瓷产品示意
陶瓷基板是指铜箔在高温下直接键合到氧化铝(Al2O3)或氮化铝(AlN)陶瓷基片表面( 单面或双面)上的特殊工艺板。所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像PCB板一样能刻蚀出各种图形,具有很大的载流能力。因此,陶瓷基板已成为大功率电力电子电路结构技术和互连技术的基础材料。
按制造工艺分类:陶瓷基板主要分为平面陶瓷基板和三维陶瓷基板两大类。
主要的平面陶瓷基板工艺可分为薄膜陶瓷基板(TFC)、厚膜印刷陶瓷基板(TPC)、直接键合铜陶瓷基板(DBC)、活性金属焊接陶瓷基板(AMB)、直接电镀铜陶瓷基板(DPC)。
主要的三维陶瓷基板分为高温共烧陶瓷基板(HTCC)和低温共烧陶瓷基板(LTCC)。
现阶段较普遍的陶瓷散热基板种类有:HTCC,LTCC,DBC,DPC,AMB等。
HTCC(High Temperature Co-fired Ceramic,高温共烧陶瓷):属于较早发展的技术,是采用陶瓷与高熔点的W、Mo等金属图案进行共烧获得的多层陶瓷基板。但由于烧结温度较高使其电极材料的选择受限,且制作成本相对昂,促使了LTCC的发展。封装工艺图如下:
LTCC在无源集成领域优势突出,广泛用于3C、通信、汽车、军工等市场。它可以实现三大无源器件(电阻、电容、电感)及其各种无源器件(如滤波器、变压器等)封装于多层布线基板中,并与有源器件(如功率MOS、晶体管、IC模块等)共同集成为完整的电路系统(如SiP)。现已广泛应用于各种制式的手机、蓝牙、GPS模块、WLAN模块、WIFI模块等;此外,由于其产品的高可靠性,在汽车电子、通讯、航空航天与军事、微机电系统、传感器技术等领域的应用也日益上升。
DPC(Direct Plating Copper,直接镀铜):是在陶瓷薄膜工艺加工基础上发展起来的陶瓷电路加工工艺。以陶瓷作为线路的基板,采用溅镀工艺于基板表面复合金属层,并以电镀和光刻工艺形成电路。封装工艺如下2种:
DBC(Direct Bonded Copper,直接覆铜):通过热熔式粘合法,在高温下将铜箔直接烧结到Al2O3和AlN陶瓷表面而制成复合基板。封装工艺如下
AMB(Active Metal Brazing,活性金属钎焊):AMB是在DBC技术的基础上发展而来的,在 800℃左右的高温下,含有活性元素 Ti、Zr 的 AgCu 焊料在陶瓷和金属的界面润湿并反应,从而实现陶瓷与金属异质键合。
综上述五大工艺种中,HTCC\LTCC都属于烧结工艺,成本都会较高。而DBC与DPC则为国内近年来才开发成熟,且能量产化的专业技术,DBC是利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接镀铜技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高。
与传统产品相比,AMB陶瓷基板是靠陶瓷与活性金属焊膏在高温下进行化学反应来实现结合,因此其结合强度更高,可靠性更好,极适用于连接器或对电流承载大、散热要求高的场景。尤其是新能源汽车、轨道交通、风力发电、光伏、5G通信等对性能要求苛刻的电力电子及大功率电子模块对AMB陶瓷覆铜板需求巨大。
按照材料分类:陶瓷基板主要材料包括氧化铍(BeO)、氧化铝(Al2O3)、氮化铝(AlN)和氮化硅(Si3N4)等。
陶瓷粉体是影响陶瓷基板物理、力学性能的关键因素。粉体的纯度、粒度、物相、氧含量等会对陶瓷基板的热导率、力学性能产生重要影响,其特性也决定了基板成型工艺、烧结工艺的选择。
BeO陶瓷具有较高的热导率,但是其毒性和高生产成本限制了它的生产和应用。
Al2O3陶瓷基板因其价格低廉、耐热冲击性好已被广泛应用,但因其热导率相对较低和热膨胀率不匹配的问题,已无法完全满足功率器件向大功率、小型化方向发展的趋势。
AlN和Si3N4陶瓷基板在膨胀系数及热导率方面的优势被认为是未来的发展方向。Si3N4的挠曲强度更是得到大幅改善, 设计师们也因此而受益;其断裂韧性甚至超过了氧化锆掺杂陶瓷,在 90 W/mK 的热导率下达到了6.5~7 MPa/√m。